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A VARIATIONAL PRINCIPLE FOR INCOMPRESSIBLE
AND NEARLY-INCOMPRESSIBLE ANISOTROPIC ELASTICITY*

SAMUEL W, KEY

Sandia Laboratories, Albuquerque, New Mexico

Abstract···A specialized form of Reissner's variational principle is developed which is suitable for anisotropic
incompressible and nearly-incompressible thermoelasticity. The finite element method is used to find solutions
in two axisymmetric problems where the material is cylindrically orthotropic and incompressible. The developed
variational principle has the feature that the volumetric strain appears in only one equation and errors com­
mitted in approximating this equation do not re-enter the stress calculations.

INTRODUCTION

IN ELASTIClTY, the minimum potential energy principle is the most common variational
statement used. It takes the displacements as unknowns and has as its Euler equations the
equilibrium equations in terms of the displacements. The finite element method is a means
of finding an approximate solution. It is a numerical solution technique with similarities
to the Ritz method that is applied to a variational formulation of a problem. When the
finite element method is applied to the minimum potential energy formulation, an approxi­
mate displacement field is obtained which is differentiated to find the strains from which
the stresses are calculated. This results in fairly coarse answers for the stresses.

An additional difficulty occurs when nearly incompressible materials are considered,
as in the solid propellant rocket industry. The equations represented by the minimum
potential energy principle contain a coefficient which goes to infinity as Poisson's ratio, v,
approaches one-half. This is reflected in the finite element method by a loss in accuracy
in the approximate solution for the displacement field. As a result, the stresses obtained
are frequently oflittle value. It is for this reason that an alternative to the minimum potential
energy principle is sought.

Reissner's variational principle is an alternate variational statement of the problem.
It utilizes both displacements and stresses as unknowns and has as its Euler equations
the equilibrium equations in terms of stresses and the stress-displacement relations. The
difficulties encountered in the minimum potential energy principle for incompressible
or nearly-incompressible material, do not arise when using Reissner's principle. The two
principles are very closely related with Reissner's principle being the canonical form
of the minimum potential energy principle, Tonti [IJ with the development there ascribed
to Fraeijs de Veubeke [2].

F. de Veubeke's derivation of Reissner's principle immediately leads to a modified
variational principle which is also suitable for incompressible and nearly-incompressible
material. The modified variational principle introduces only a single stress, a pressure.
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The finite element method is used with the modified principle to solve two axisymmetric
problems where the material is cylindrically orthotropic and incompressible.

Herrmann [3J has examined this problem for isotropic materials and has presented a
modified Reissner's variational principle for use with incompressible and nearly-incom­
pressible isotropic materials. However, the extension to anisotropic and in particular
orthotropic materials is not an obvious step.*

REISSNER'S PRINCIPLE AFfER F. DE VEUBEKE

The derivation of Reissner's principle from the minimum potential energy principle is
accomplished with a Legendre transformation. Courant and Hilbert [4J, page 238, can be
consulted regarding this technique. Consider the potential energy functional for anisotropic
thermoelasticity. It is

where

( i) fII (tc
ijrs

C
ijrs AT {i) d If T- i dnpu = "2 UU,j)U(r.s)- UU.jjC/·rs'-J. -p Ui v- s- Ui S

V T

(I)

Cjrs = c jirs = cijsr = c
rsij are the anisotropic elastic constants,

U(i,j) = ~(Ui,j + Uj ';), are the infinitesimal strains,
(J.rs are the anisotropic coefficients of thermal expansion,
~T is the temperature change,
p is the mass density,
P are the body forces,
fi are the surface tractions on the boundary Sr,
U i are the displacements, and
iii are the displacement boundary conditions on Su'

Indicial notation and the summation convention on repeated upper and lower indices are
used. The comma denotes covariant differentiation. Figure 1 shows the problem being
considered.

The Euler equations obtained by minimizing np on those displacements which are
continuous and equal iii on Su are the equilibrium equations

- (cijrsu . = p.t i - (Cjrsa ~T) .(r,s),} '.J rs ,}

and the stress boundary conditions

cijrsu n. = fi +Cijrsa ~Tn·
(r.s) } rs}

(2)

(3)

where n
j

is the outward normal shown in Fig. 1. Equation (2) represents a set of three
simultaneous second order partial differential equations in the three displacements u,.

Following Tonti [IJ, a Legendre transformation is made. The generalized stresses, (Iij,

are defined as .. cL .. .,
(I I) = __ = Cl}rsu - c,}rsa ~T

C
. (r,s) rs'

,U(i.j)

(4)

* Since the submission of this manuscript, a paper by Taylor, Pister and Herrmann has appeared, "On a
Variational Theorem for Incompressible and Nearly-Incompressible Orthotropic Elasticity." Int. J. Solids
Struct. 4, 875-883 (1968). The development there hinges on the introduction of an arbitrary splitting of the
elastic compliance tensor which remains throughout the analysis. The present development does not require
such a step. Due to this difference, their results are not contained as a special case of the present work.
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FIG. 1. Problem geometry.

where L is the volume integrand in equation (1). The function H is constructed as

H(u i , aij) = aiju(i,j) - L(ui , u(i,j»)'

From the function H, the canonical equations are obtained by

(5)

oH
U(i,j) = oaij and (6)

The function H is written as a function of Ui and a
rs by solving equation (4) for u(r,s) and

substituting into equation (5), Equation (4) solved for u(r,s) gives

U(r,s) = Brsij(ji
j + iJ(rsL1 T,

where B rsij is the inverse of cijrs, The substitution in equation (5) gives

H( rs) - .!.B rs ij+ rs AT + .I'iUi , a - 2 rsija (j a iJ(rsL.\ PJ Ui ,

and the canonical equations for this problem are

_ail = p,l'i
'J 'J,

(7)

(8)

(9)

Reissner's variational principle is obtained by expressing L in terms of the function H
from equation (8), The result is

( ij) - fff( ij lB rs ij rs AT .l'i)d If. T- i d7fR u i , a - a U(i,j) -2 rsija a -a iJ(rsL.\ - PJ Ui V - s- Ui S,

V T

(10)

By extremizing the above functional with respect to both the displacements and stress, the
equations (9) are obtained.
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MODIFIED VARIATIONAL PRINCIPLE

The problems in elasticity which deal with incompressible and nearly Incompressible
materials can be handled more conveniently by a modified Reissner's variational prin­
ciple. Reissner's variational principle is adequate for this class of problems but involves a
large number of unknown functions. By introducing a single unknown, the pressure p.

the difficulties encountered for incompressible or nearly incompressible materials can be
avoided.

In essence, the volume strain u\ is replaced by the pressure p, and the volume strain is
related to the pressure by a constitutive relation. The potential energy functional in terms
of displacements, volume strains, and deviatoric strains becomes

()-fff [I e ijrs , , I k e rij , I c'rs( k)2 e ijrs , A TRp Ui - 2 UU,j)U(r.s) + ]'U,k r U(i.j) +18 rs U,k - U(i,j)'~rsLl

V

where u(r,s) = u(r,s) - ±u\brs , the deviatoric strains.
Proceeding as before, the pressure p is defined as

aL
p=~--

- au\

_ lerij' , +lers k lerij AT
-]' r UU,j) 9 'rsU.k - J r (XijLl ,

Solving this equation for the volume strain u\ gives

(
3 e

kij
') A

k
k = j p- k UU,j) +3~k

U,k' ers Crs '
rs rs

where A rs = csij(Xijt. T, The resulting function H is

H(Ui'P) = pu\-L(ui , U(i,jp u\)

(Ill

(12)

(13)

(14)

1 (3 C'ki j ')2 le"ijrs, , I (3 C'kij' )A
'
+ A'ij' + t'i= 2Crs p - k UU,j) - 2 U(i,j)U(r,s) +Crs P - k U(i,j) I UU,j) P Ui ·

~ rs

The resulting canonical equations are

~H (3 C'ki
j
') A

k
k C P - .k u(i,j) k

U,k = -~- = 3 crs +3 crs'
cp rs rs

i' aH (aH) .ri ((3 P - C~kmnU(m,n»)C'kij)
_(pgJ),j = --- -~-,- = PJ + rs k.

aUi cU(i,j) ,j e rs ,J

+(cijrsu ' ) ,+( Al C'kij ) -A:Jij.
(r,s) ,J C.S k .

rs .J

(15)
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A form of Reissner's variational principle is obtained by expressing L in terms of equation
(14). The result is

fff [ k 1 'kij' 2 tc"ijrs, , Aj (3 C kij ,)
nt(ubP) = pU.k-2C~~(3p-Ck UU,j») +2 U(i.j)U(r.s)- c~~ P- k U(i.j)

v (16)

- A,ijU(i,j) - PtUi] dv - flsT fiUi ds.

By extremizing the above functional with respect to both the displacements and the
pressure, equations (15) are obtained.

This procedure is easily modified to treat a material containing inextensible or nearly­
inextensible cords or membranes where the same ill conditioning occurs. For cords, a
stress variable is defined using equation (12) based on the extensional strain component
aligned with the cords. For a membrane, two stress variables are defined using equation (12)
based on the extensional strains in the plane of the membranes. For a "plane" of incom­
pressibility or near-incompressibility, for example, the 1-2 plane, a stress variable is
defined using equation (12) based on ut . t +U2 ,2' In each case a variational principle is
developed just as above. The analysis in Ref. [7J may also be altered in the same manner.
In principie these cords, membranes, and planes need not coincide with coordinate direc­
tions; however, the complexity introduced may prevent useful computations.

For isotropic materials, considerable simplification results in both the variational
principle and the canonical equations. The variational principle becomes

(17)

The resulting Euler equations are

(18)(2 ' k j ) _ .r i- P.i - !lU(i,k)g ,j - PJ , U\ = ().:t/l) + 3rxL1. T.

Both the variational principle (17) and the Euler equations (18) differ from those
presented by Herrmann [3J and used as a basis for finite element computer codes by Pister,
Taylor, and Dill [5J, and Becker and Brisbane [6].

The differences in formulation can be seen by looking at the equilibrium equations of
the variational principle used by Herrmann. The equations are

3v k'
- -1-P i - (2/lU(i k)g J) J' = pi; - (2!wL1. n ,'.+v ' " ,

It can be seen that the second term in this equation still contains a volume strain. Not all
of the volume strain u\ has been replaced by the pressure p. The same is true in the varia­
tional principle used by Herrmann. There is, in fact, an infinite number of variational
principles between the functional (17) and the variational principle presented by Herrmann
The one presented here has the feature that the volumetric strains occur in only one
equation. In using the finite element method to obtain an approximate solution, as is
done below, errors committed in satisfying equation (15a) will not re-enter the calculation
of the stresses.
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FINITE ELEMENT SOLUTION

As a test of the practical applicability of the modified Reissner's variational principle.
equation (16) has been specialized to orthotropic axisymmetric thermoelasticity, and two
problems worked. The existing computer code of Becker and Brisbane [6J was modified
to carry out the analysis, Ref. [7]. The cylindricalIy orthotropic stress-strain-temperature
relation used is

- Vr8 - Vrz 0err
Err Err Err

(J rr '1rr

- VOr - VOz 0eoo
E oo Eoo Eoo

(Joo ,:too

+ /1 T,
- vzr - vzo 1

ezz --- 0 (J zz r:J. zz
Ezz E zz Ezz

I
0erz 0 0 0 (Jrz

2Grz

(19)

where the following symmetries are required

(20)

If the limiting case of an incompressible material is being treated, the folIowing expressions
must be satisfied:

l-vor-vOz = 0, (21)

This is a specialization of the condition B~ij = 0 which is obtained from imposing incom­
pressibility on the relation

Inverting equation (19) results in

(Jrr Crr CrO Crz 0 err - r:J.rr/1 T

(Joo CrO Coo Coz 0 eoo - r:J.oo/1 T

(Jzz Crz Coz C zz 0 ezz - r:J.zz/1 T

(Jrz 0 0 0 Grz 2erz

(22)

(23)
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where

Crr = Err(1-v8zvz8)/~'

Cee = E88(1- Vrz Vzr)/~'

Czz = Ezz(1- Vr8V8r)/~'

Cr8 = E88(Vr8+ VrzVz8)/~'

Using matrix notation, the quadratic form in the deviatoric strains,

1C"ijrs, ,
2: UU,j)u(r,s)'

becomes

ou T ou
C"IIII C"1122 C" 1133 0

or or

U C"1122 C"2222 C"2233 U
0

r r
I
2:

ow
C"1133 C"2233 C"3333 ow

OZ
0

OZ

~(OU + ow) 0 0 0 2C"1313 ~(ou+ ow)
2 OZ or 2 OZ or

where

(24)

(25)

(26)

C"IIII = M4Crr+C88+Czz-4Cr8-4Crz+2C8z),

C"2222 = !(Crr +4C88 +Czz - 4Cr8 + 2Crz -4C8z ),

C,,3333 = MCrr +C88 +4Czz +2Cr8 -4Crz -4C8z ),

C"1122 = M5Cr8-Crz-C8z-2Crr-2C88+Czz)'

C"1133 = ¥5Crz - Cr8 - C8z - 2Crr - 2Czz + C88),

C"2233 = !(5C8z - Cr8 - Crz - 2Czz - 2C88 + Crr),

C" 13 13 = 2Grz '

Here the computational identity cijrs'U(r,s) == cijrs'ur,s has been used, In matrix notation,
the quadratic form

becomes

i L~~ZJT:z ~ZJ [P~~Zl
EZ = j-(Err +E88 +Ezz ),

(27)
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Using matrix notation, the quadratic form

becomes

pjEt T 9Ef -3EtCt' ~3EtC~k12 ~3EtCt3

au
3EtCt' (Ct' ')' ct'ct

2

Ct"ct'or
2C~~ u

-3EtCt
2 ct'ct' , (C~k21)2 ct"ct'

r

ow
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p/Et

I'U
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U

r

ow IaZ J

, (28)

ct
2

= 1(+2Coo Crr Czz+Cro-2Crz+Cozl,

ct' = 1( +2Czz Crr-COo-2Cro+Crz+COz)'

(29)

The three quadratic forms (25), (27), and (28) are combined to give
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In matrix notation, the linear form

1 k"(3 C' 'J J )Clmn ATcrs p - .k U(i,j) I iXmnLl
rs

becomes
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Using matrix notation, the linear form
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p/E~ T

OU
or
U
r
ow
oz

!(ou + ow)
2 oz or

o

o

(32)

The remaining linear forms become

-pjlui = -r :lTr~J
p/E~ 0

and

(33)

(34)



960 SAMUEL W. KEY

In the limit of an incompressible material equations (26), (29) and (32) degenerate into the
indeterminate form % and must be evaluated by taking limits. This process is covered in
detail in Ref. [7].

In employing the finite element method to find a solution, a choice in element geometry
and an assumption on how the unknowns vary in each element must be made. The com­
puter codes of Pister, Taylor and Dill [5J and Becker and Brisbane [6J use quadrilateral
elements obtained by combining four triangular elements as shown in Fig. 2. In both
computer codes, a common pressure is taken in all four triangles, giving a constant value
to p/E~ for the entire quadrilateral. The displacements u and ware assumed to vary
linearly in each triangle. These assumptions are retained in the modified computer code
of Becker and Brisbane [6].

z,~

k

L---------------~r

FIG. 2. Quadrilateral finite element.

.EXAMPLE SOLUTIONS

The first problem considered is an infinite, hollow, right circular cylinder under
internal pressure. Figure 3 shows the geometry used. Analytidtlly, the stresses are given by

(35)

Figures 4 and 5 show the behavior of the stresses (Jrr and (Joo as the number of elements is
increased and demonstrates the behavior of the approximations in the finite element
method.

The second problem is a study of the effect of "hoop reinforcements" in an infinite.
hollow, right circular cylinder under internal pressure. Figure 3 shows the geometry used.
The study was made by taking Err = Ezz = 1000 psi and varying Eoo upwards from
1000 psi for an incompressible material. This problem is typical of those encountered in
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w=o, Tr=o

Tr=p Tr=o

Tz=o Tz=o

w=o Tr=o

l-----.L------------L----..,.r
a=2.o" b=14.0"

FIG. 3. Hollow infinite cylinder under internal pressure.

Err =EOO= Ezz

11=0.5
o 12 Elements
o 6 Elements
o 3 Elements
t. 1 Element

- Actual Solution

1.0

a. 0.8
--::::-

b'--
,;;

0.6Vl

~
if)

~
"'0 04('C

a::

0.2

0.0
0 2 4 6 8 10

Radius, r (inChes)

12 14

FIG. 4. Convergence of the finite element solution for the radial stresses as the number of
elements increases.
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Err =EOO =EZZ

v =0.5

° 12 Elements
o 6 Elements
o 3 Elements
I:>. 1 Element

Actual Solution

1.0

0..---q:,
roq:,o.8
<Ii
til

~
+-'
(f) 0.6
t'tl

C
Cl)

~ 0.4E
=>
~

U
0.2

0.0
0 2 4 6 8 10

Radius, r (inChes)

12 14

FIG. 5. Convergence of the finite element solutio!) for the circumferential stresses as the number of
elements increases.

0,0,0 Finite Element Solutions
Actual Solutions

Err =Ezz=E=1000psi

Incompressible_E_=l
En

1
"2
1

0.001 "3

0.004

cE0.003
Cl)
u
~
0..
tilo

0.002
t'tl

'U
t'tl

0::

14126 8 10
Radius, r (inChes)

42
0.0 L--_---'__--I.__--'-__---L.__--'--__--'-__-'-_~

o

FIG. 6. The changes in radial displacement with increased anisotropy.
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Err=Ezz=E=1000psi

Incompressible

0,0,0 Finite Element Solutions
Actual Solutions

Radius, r (inches)

14121082

1
"3

1
"2

-1.0

-0.8

..e:..-U2
N

eN
If;
~ -0.4
..-
(/)

ro.;<
c:( -0.6

FIG. 7. The changes in axial stress with increased anisotropy.

the analysis of solid propellant rocket engines. Figures 6 and 7 show the results of this
study.

The stresses (Jrr and (J99 are the same in this second problem as those above since these
stresses are independent of the orthotropic material properties. It should be emphasized
that the codes written by Becker and Brisbane [6J are capable of solving problems which
are much more complex than the simple problems considered above.

CONCLUSIONS

It is shown that incompressible anisotropic thermoelasticity problems can be formu­
lated with the aid of a modified Reissner's variational principle and that the finite element
method is a practical means of obtaining results. The calculated stresses in the problem
considered are shown to converge well to the analytic solution as the number of elements
increases. The effect of "hoop reinforcements" on radial displacements and axial stresses
has 'been calculated for an incompressible material.
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A6cTpaKT-BbIBO,ll,HTC$l Crrel.\HQJH'IHa$l QJOPMa BapHal.\HOHHoro npHHl.\Hna PeliccHepa, npHro,l\Ha$l ,l\Jl$l
aHH30TponHoli HeCJKHMaeMoli 11 nOyTH HecJKHMaeMoli TepMoyrrpyrocTH, I1crronb3yeTcli MeTO,l\ KOHe'lHOrO
3neMeHTa C l.\eJlblO nOJlY'leHI1$1 pellleHI111 ,l\BYX oceCHMMeTpH'ieCKHX 3a,l\ay, rrpH'IeM MaTepl1aJl $lBnlleTC$I
l.\HnHH,l\pH'IeCKH OpToTponHblM 11 HeCJKHMaeMbIM. BblBe,l\eHHbIli BapHal.\HOHHbIli rrpHHl.\Hrr o6na,l\aeT TaKHM
CBOllCTBOM, 'ITO 06beMHa$l ,ll,eQJOPMal.\H$I rrO$lBn$leTC$I TonbKO B O,l\HOM ypaBHeHHI1 110JlpeMl.\OCMl.\, BblTeKalOli
ll.\He 113 rrpH6nHJKeHI1$1 3Toro ypaBHeHI1$1, He BXO,ll,$lT B pac'leT HarrpllJKeHI111,


